

LC Product Specification

640-252-056 D02AK0036 Issue 5 June 30, 2006

LC Product Specification

General Definition:

The LC Connector Product is a robust optical connector designed to support Telecom and Datacom networks. The connector family includes but not limited to jumper connectors, Behind-the-Wall connectors (BTW), adapters, attenuators, modular adapters, device receptacles, jumpers, an assortment of connector modules and panels, and installation tool kits and consumable kits. The connector is defined as a small form factor connector (SFFC) with significant size reduction relative to traditional connectors, typically 50% smaller than standard SC and ST®fiber products. The square connector housing uses unique trigger and latch structures and a tunable cylindrical ferrule. The LC Connector family was designed to provide a high performance SFFC incorporating traditional technology, advances in latching systems, and versatility for both singlemode and multimode fiber applications.

Terms of Specification:

The specification document is intended to provide users of OFS LC Connector products a level of confidence and means of understanding the characteristics of purchased product. The product is designed and should be manufactured according to the specification document. The product specification serves as a guideline to the features and performance of the product, and is subject to change without notice.

Definition of Products:

LC Jumper Connectors: Robust family of connectors designed to mount on 1.6 mm fiber cordage and intended to meet the Telcordia GR-326-CORE, Issue 3, for Type I Media (typically 3.0mm cordage). Note: Telcordia GR-326-CORE, Issue 3 exceptions for smaller size and future changes for SFF connectors.

LC BTW Connectors: Shorter LC connectors designed for 900 micron buffered fiber. This product is intended to meet Telcordia GR-326-CORE, Issue 3 for Type II Media (900 micron buffered fiber).

LC Jumpers: Connectorized 1.6mm cordage in various lengths and fiber counts. Jumpers are produced in a vast array of hybrid configurations allowing interconnection between LC based product and other connector styles. These products are intended to meet Telcordia GR-326-CORE, Issue 3 for Type I Media.

LC Adapters: Two port configuration for joining two LC connectors. The adapter contains the alignment sleeve for the precise alignment of the connector ferrules. Available in simplex, duplex and higher density configurations based on application needs. See also 0dB Modular Adapters.

LC Attenuators & Modular Adapters: Attenuator products are configured as a Build-On style or a Modular Adapter. Build-On Attenuators are one-piece designs that combine an LC Connector and adapter and are available in several attenuation values. The Modular Adapters are Customer assembled from two separate single port adapters, a base and a cap. The cap is available in 0-dB and attenuated values. Each attenuator product reduces optical power internally.

LC Device Receptacles: Device ports provide a mechanism for interfacing connectors to electronic subpackages (typically T.O. Cans). LC device receptacles are available in simplex and duplex configurations.

Product Identification:

LC products are easy to identify in accordance with industry standards:

Blue represents singlemode

Beige represents multimode

Green represents singlemode APC (Angled Physical Contact)

A & B port identification is on duplex adapters in accordance with TIA 568

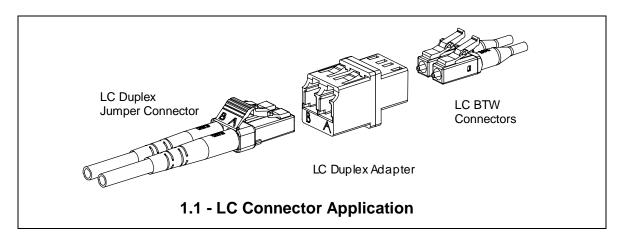
Safety Precautions:

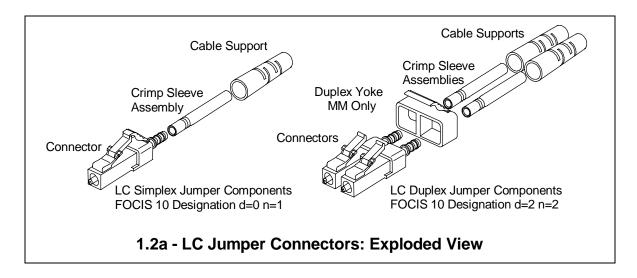
Optical fibers may emit radiation if the far end is connected to a working laser or LED. Never view the fiber end of a cable, patchcord, or plug with the naked eye or any optical instrument until absolute verification is established that the fiber is disconnected from any laser or LED source.

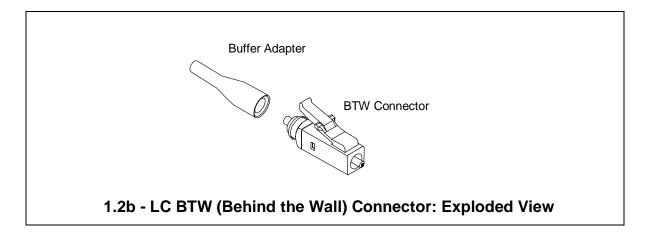
* ST® is a registered trademark of OFS, Inc.

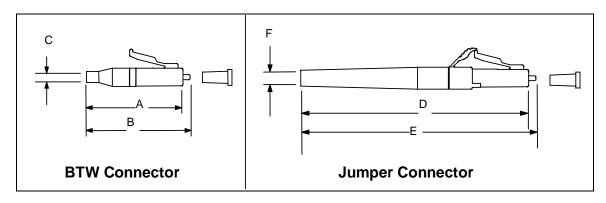
Table of Contents

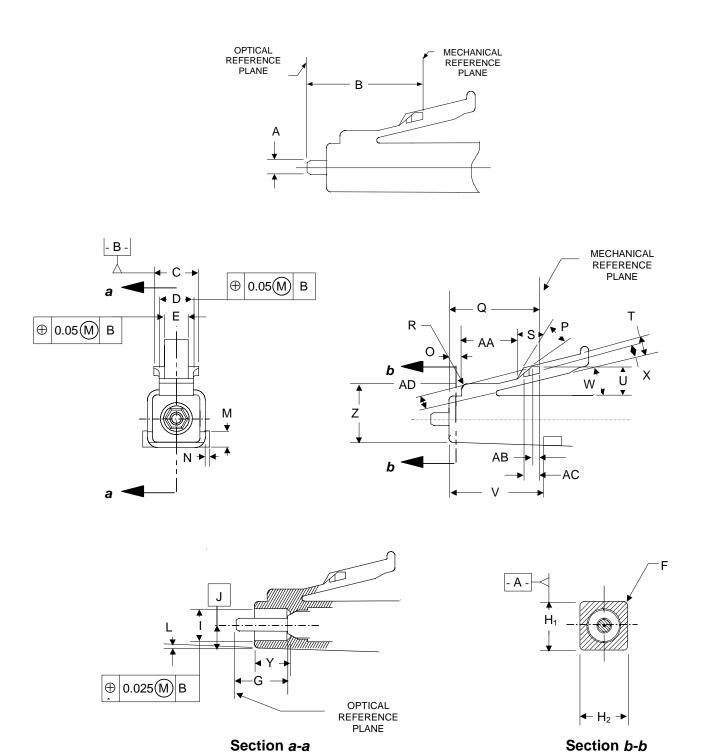
1.0 LC Connector Specification	1
1.1 LC Connector Application	2
1.2 LC Jumper and BTW Connectors (Exploded View)	2
1.3 LC Connector Footprint Dimensions	3
1.4 LC Connector Materials	
1.5a LC Simplex Connector Illustrations	4
1.5b LC Duplex Connector Illustration	
1.5c LC Connector Specifications for Intermateability	
1.6 LC Zirconia Ferrule Surface Finish Specification	
1.7 LC Connector Ferrule Extension and Contact Force	8
1.8 LC Reference Dimensions for Polishing Machine Fixtures	
1.9 LC Connector Coding	
1.10 LC Connector Color Coding	
C	
2.0 LC Adapter Specification	10
2.1 LC Duplex and Simplex Adapters (Perspective View)	11
2.2 LC Adapter Footprint Dimensions	
2.3 Panel Cutout Dimensions for Mounting LC Adapters	
2.4 LC Adapter Materials	
2.5a LC Simplex Adapter Illustrations	
2.5b LC Duplex Adapter Illustration	
2.5c LC Adapter Specifications for Intermateability	
2.6 LC Duplex Adapter Mounting Options	
2.7 LC Adapter Coding	
2.8 LC Adapter Color Coding	
·	
3.0 LC Device Receptacle Specification	17
3.1 LC Simplex Device Receptacle (Front & Rear Exploded View)	
3.2 LC Duplex Device Receptacle (Front & Rear Exploded View)	
3.3 LC Device Receptacle Materials	
3.4a LC Simplex Device Receptacle Illustrations	20
3.4b LC Duplex Device Receptacle Illustration	
3.4c LC Device Receptacle Specifications for Intermateability	
3.5 LC Device Receptacle Interface – Alignment Sleeve Grade	
3.6 Pin Gauge for LC Device Receptacle	23
3.7 Pin Gauge Grade Table	
3.8 LC Device Receptacle Coding	23
3.9 LC Adapter Color Coding	23


4.0 LC Attenuator Specification	. 24
4.1 LC Attenuator Buildout System (Exploded View)	. 25
4.2 LC Attenuator Buildout Footprint Dimensions	25
4.3 LC Attenuator Materials and Specifications	
4.4 LC Attenuator Attenuation Levels and Performance	27
4.5 LC Attenuator Compliance to GR-910-CORE	. 28
4.6 Spectral Flatness	
4.7 Power Divergence	. 29
4.8 LC Attenuator Coding	. 30
4.9 LC Attenuator Color Coding	30
5.0 LC Jumper Specification	. 31
5.1 LC Simplex Jumper on 1.6mm cordage	. 32
5.2 LC Simplex Jumper Exploded Assembly	. 32
5.3 LC Duplex Jumper Exploded Assembly	. 33
5.4 LC Duplex Jumper as per TIA/EIA	
5.5 LC Jumper/Connector Materials	34
5.6 LC Minicord Technical Specifications	
5.7 LC SM Ferrule Endface Geometry	
5.8 LC APC Endface Geometry	. 36
5.9 LC APC Ferrule/Angle Orientation	
5.10 LC Factory Made Patch Cord Specifications	
5.11 Visual Inspection Criteria for Fiber Optic Connectors	38
5.12 LC SM Jumper Tuning Configuration	
5.13 LC SM Jumper Laboratory Performance (Tuned vs. Untuned)	40
5.14 LC Jumpers – Available Configurations	. 41
5.15 LC Jumper Coding	. 42
5.16 LC Jumper Color Coding	42
6.0 LC Connector Product Data	43
6.1 Performance Criteria (1997)	
6.2 1997 Test Descriptions	
6.3 LC Test Results	. 48
6.4 Test Data	. 49-51



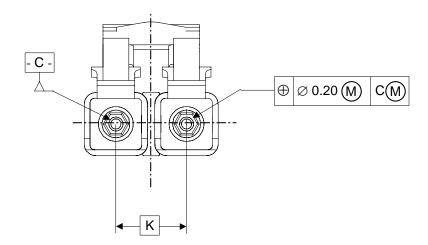

1.0 LC Connector Specification


1.0 - LC Connector Specification


1.3 - LC Connector Footprint Dimensions			
REF.	DIMENSIONS		
	Minimum	mm	Maximum
А	-		30
В	-		32
С	0.7		1.4
D	-		49
E	-		51
F	1.8		3.4

1.4 - LC Connector Materials				
Connector Part	Material	UL 94 Rating	Oxygen Index	
Unibody Housing	Engineering Plastic	V-0	38%	
BTW Housing	Engineering Plastic	V-0	47%	
BTW Extender Cap	Engineering Plastic	V-0	38%	
Cable Support	Thermoplastic Elastomer	V-0	30%	
Heat Shrink Tubing	Polyolefin (flame retardant)	UL/CSA Recognized ²	-	
Buffer Adapter	PVC	V-0	28%	
Simplex Trigger/Duplex Yoke	Nylon	V-0	31%	
Spring	Metal	-	-	
Ferrule	Zirconia	-	-	
Crimp Sleeve	Metal	-	-	
Jumper Ext. Cap Insert	Metal	-	-	
Ferrule Flange	Metal	-	-	
Ferrule Flange Tubing	Teflon® PTFE 1	V-0	95%	
Dust Cap	Engineering Plastic	V-0	30%	

Notes:


- Teflon is a registered trademark of Dupont UL 224, 125 C, 600V, VW-1
- 2.

1.5a - LC Simplex Connector Illustrations

1.5b - LC Duplex Connector Illustration

1.5c – L	.C Connector Spec	ifications for Inter	mateability
Dim.	Min.	Max.	Notes
	(mm)	(mm)	
Α	1.2485	1.2495	diameter
В	10.3	10.5	1
С	4.2	4.4	
D	3.2	3.35	
E	2.2	2.4	
F	0.3	0.5	radius
G	4.88	4.98	ferrule extension
H₁	4.42	4.52	
H ₂	4.42	4.52	
I	3.0	3.2	diameter
J	H/2	H/2	
K		6.25	basic dimension, 6
L	0.0	0.2	degrees, 5
M	1.07	-	
N	0.56	-	
0	1.1	1.3	
Р	21	-	degrees, typical
Q	8.5	8.7	
R	0.4	0.6	radius
S	30	-	degrees, typical
Т	1.4	1.6	
U	2.7	2.9	
V	12.2	-	
W	14	-	degrees, typical
Х	0.5	0.7	<u> </u>

Y	3.3	3.5	
Z	5.6	5.7	
AA	5.2	5.4	
AB	0.3	0.5	
AC	1.3	1.5	
AD	1.2	1.4	

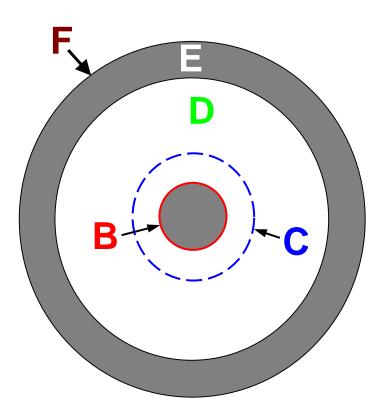
- NOTE 1. Dimensions B and G are given for a plug endface when not mated. The ferrule is movable by a certain axial compression force, with direct contacting endface, and therefore dimensions B and G are variable. Ferrule compression force shall be 5.0 N to 6.0 N when the position of the optical datum target is moved to the range 9.6 mm to 10.2 mm.
- NOTE 2. Dome eccentricity of the spherically polished endface shall be less than 50 μm .
- NOTE 3. A Chamfer or Radius is allowed to a maximum depth of 0.5 mm from the ferrule endface.
- NOTE 4. These dimensional requirements apply to the finished ferrule, after all polishing procedures have been completed.
- NOTE 5. Taper, dimension L, is applied to the surfaces associated with dimension/feature H_1 and H_2
- NOTE 6. Each of the units in the duplex connector shall comply with all of the dimensions of Figures 1.5a and 1.5b

7

1.6 - Ferrule Surface Requirements (SM only) Issued June 1, 2000 Definition of Regions of Ferrule End

B = FIBER HOLE

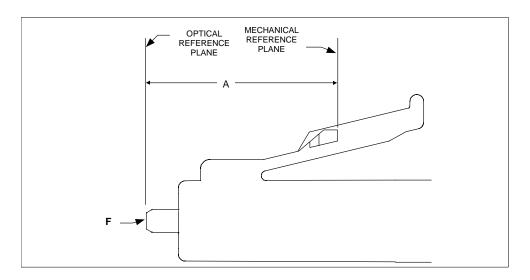
C = FERRULE SURFACE


FERRULE END SURFACE COVERING AREA FROM FIBER HOLE TO 250 MICRON DIAMETER

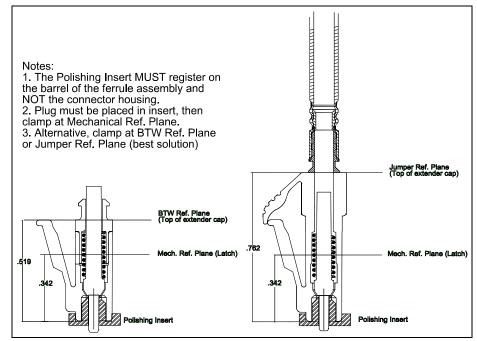
D = FERRULE PEDESTAL

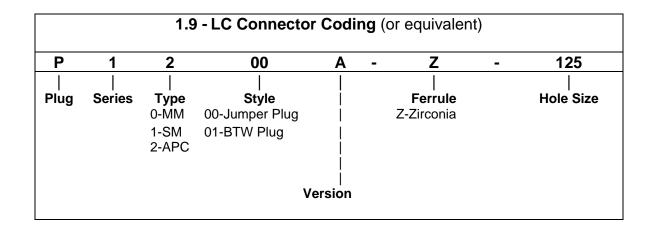
ALL REMAINING FERRULE END SURFACE FROM 250 MICRON DIAMETER TO CHAMFER

E = CHAMFER


F = OUTSIDE CYLINDERICAL SURFACE

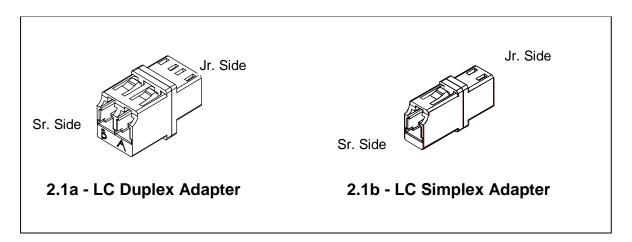
DEFECT	С	D	F
VOIDS and BLACK SPOTS - SINGLEMODE	 Voids and black spots < 2.0 μm do not count. Maximum diameter < 10 μm. Cannot touch the fiber hole Sum of diameters of voids and black spots < 30 μm. 	 Voids and black spots < 2.0 μm do not count. Maximum diameter voids < 25um. Maximum diameter black spots < 100 μm Sum of diameters of voids and black spots < 100 μm. 	 Voids and black spots <10 μm dia. do not count. Maximum diameter voids < 50 μm. Sum of all void diameters < 150 μm. Maximum diameter black spots < 150 μm. Sum of all black spot diameters < 500 μm.
VOIDS and BLACK SPOTS - MULTIMODE	Maximum allowable diameter of: > Voids < 10 μm > Black spots < 10 μm	Max. allowable diameter of: > Voids < 25 μm > Black Spots < 100 μm	Max. allowable diameter of: ➤ Voids < 50 μm ➤ Black Spots < 150 μm
CHIP – Fiber Hole	Maximum length of chip < 40 μm Maximum width of chip < 3 μm		
CHIP – Pedestal Edge		Max. length of chip < 100 μm Max. width of chip < 50 μm Max. depth of chip < 20 μm	
SCRATCHES	Maximum width < 3 μm.		
SURFACE ROUGHNESS	0.1 μm R _a (arithmetic avg.) Max.	0.1 μm R _a (arithmetic avg.) Max.	
CRACKS	None allowed in ferrule	None allowed in ferrule	None allowed in ferrule
CHAMFER	Chamfer around fiber hole < 1 μm depth		

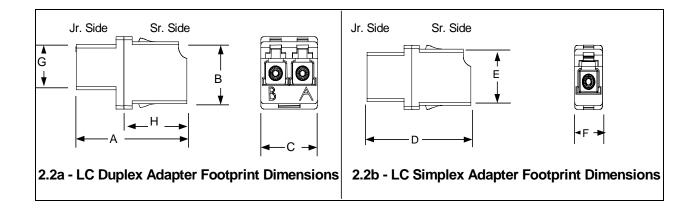

LC Product Specification


1.7 - LC Connector Ferrule Extension and Contact Force			
	Requirements for ferrule travel and contact force:		
	IF THEN		
1	1 $F = 0$ $A \ge 10.45 \text{ mm}$		
2	2 $A \le 10.2 \text{ mm}$ $F \ge 5 \text{ N } (510 \text{ gf})$		
3	3 $A \ge 9.6 \text{ mm}$ $F \le 6 \text{ N (612 gf)}$		

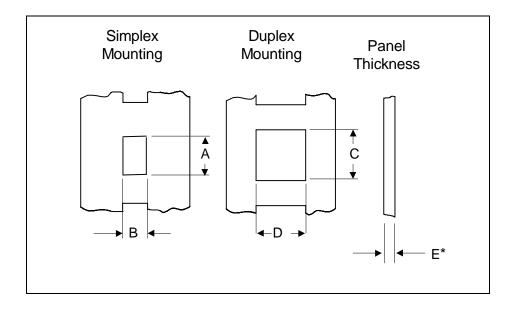
Note: Dimension A is for finished ends after all polishing has been completed

1.8 - LC Reference Dimensions (inches) for Polishing Fixturing

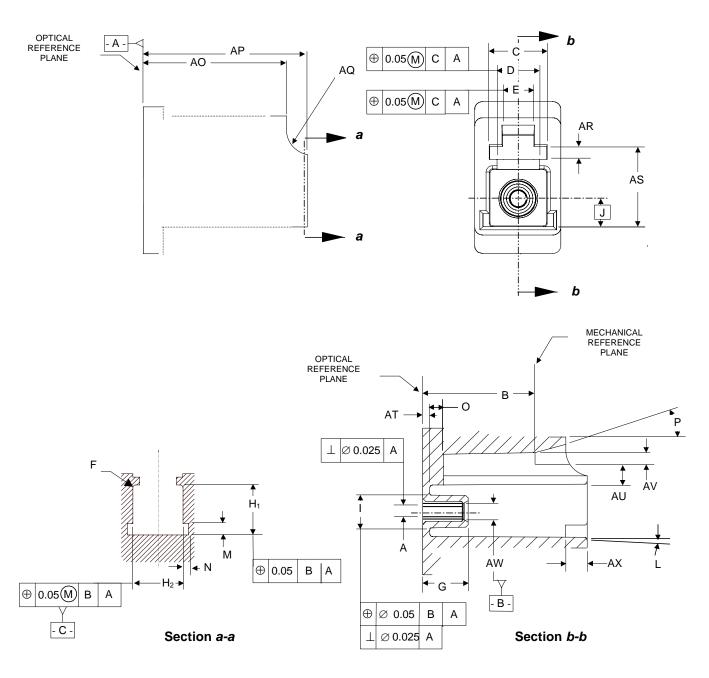

	1.10 - LC Connector Color Coding				
Connector	Connector Housing Color Cable Support Color				
SM	Blue	White			
MM	Beige	White			
APC	Green	White			



2.0 - LC Adapter Specification

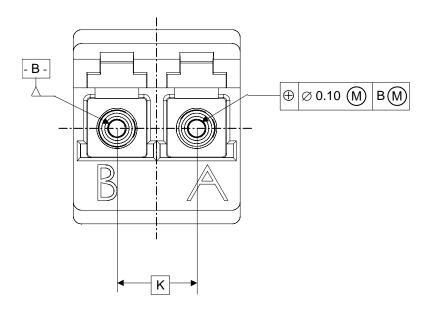

2.0 - LC Adapter Specification

REF.	DIME	NSIONS
	Minimum	mm Maximum
Α	25.0	30.0
В	13.0	13.1
C	13.0	13.1
D	25.0	30.0
Е	11.5	11.6
F	6.9	7.0
G	10	10.1
Н	14.55	14.65



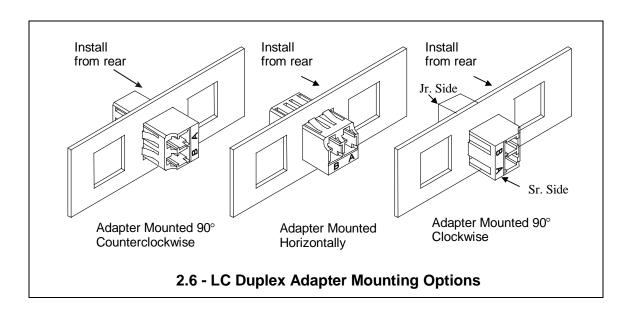
2.3 - Panel Cutout Dimensions for Mounting LC Adapters			
Dimension	Minimum	Maximum	
	(mm)	(mm)	
Α	11.7	11.8	
В	7.1	7.2	
O	13.2	13.4	
D	13.2	13.4	
E*	1.2	1.7	

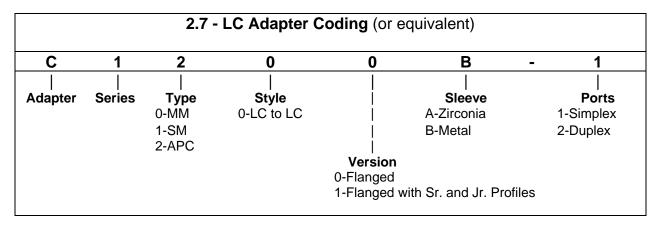
^{*} Panel thickness "E" applies after surface preparation i.e. painting, etc.


2.4 - LC Adapter Materials					
Connector Part Material UL 94 Rating Oxygen Index					
Adapter Housing Engineering Plastic V-0 47					
SM Sleeve	SM Sleeve Zirconia				
MM Sleeve	MM Sleeve Metal				

2.5a - LC Simplex Adapter Illustrations

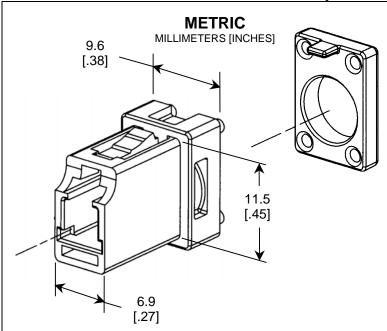
2.5b - LC Duplex Adapter Illustrations

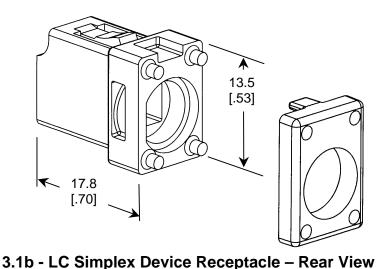

2	Fo. I C Adopte	r Specifications for	r Intermetechility
2	5C – LO Adapte	r Specifications for	ппетпатеартту
Dim.	Min.	Max.	Notes
	(mm)	(mm)	
Α	-	-	diameter 1, 2, 3
В	9.9	10.0	
С	4.5	-	
D	3.4	3.5	
Е	2.6	2.7	
F	0.2	0.3	radius
G	4.0	4.1	
H ₁	4.65	4.75	
H ₂	4.65	4.75	
I	2.87	2.97	diameter
J	2	29	basic dimension
K	6	.25	basic dimension
L	0.0	0.2	degrees, 5
М	1.0	1.1	-
N	0.5	0.6	
0	-	1.2	
Р	15	-	degrees, typical
AO	11.1	12.8	
AP	14.5	14.7	
AQ	2.2	2.4	radius
AR	1.1	1.2	
AS	6.6	6.8	
AT	0.6	0.7	



AU	1.8	2.0	
AV	1.0	1.1	
AW	1.4	1.5	diameter
AX	1.9	-	

- NOTE 1. The connector alignment feature is a resilient (split) alignment sleeve, and the sleeve may be either fixed or floating. For a fixed sleeve the positional tolerance of dimension I applies to both A and I dimensions. For a floating sleeve, a gauge pin inserted in the sleeve must be capable to move freely into a position such that it is coincident with datum B. Dimension A defines the inner diameter of the alignment feature.
- NOTE 2. The connector alignment feature is an alignment sleeve. The feature must accept a pin gauge to the center of the adapter with a force of 1.0 N to 2.5 N under the condition that another pin gauge is inserted into the feature from the other side until both pin gauges butt against each other. The pin gauge shall be 1.2490 mm. The center of the adapter is defined by the left side position of dimension B.
- NOTE 3. Each of the units in the duplex adapter shall comply with all of dimensions of Figures 2.5a and 2.5b.
- NOTE 4. Taper, dimension L, is applied to the surfaces associated with dimension/feature H_1 and H_2 .

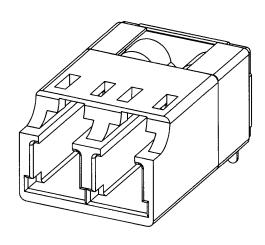

2.8 - LC Adapter Color Coding				
Adapter	Housing Color			
SM	Blue			
MM	Beige			
APC	Green			


3.0 – LC Device Receptacle Specification

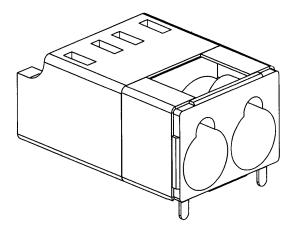
3.0 - LC Device Receptacle Specification

3.1a - LC Simplex Device Receptacle - Front View

SPECIFICATIONS


- Compliant with FOCIS 10 Connector Standard (to be TIA/EIA-604-10).
- Housing material is an engineered thermoplastic.
- Non-keyed connector adapter housing.
- Housing accepts a ferrule alignment and device insert.
- Insert provides LC ferrule stop and known optical reference plane.
- Device insert bore is cylindrical, with non-rotation flat in outer diameter.
- Two-piece design aids in device installation.
- The assembled adapter is mounted using the moldedin cantilever latching arms.
- Includes one simplex LC bore dust cover.

FEATURES

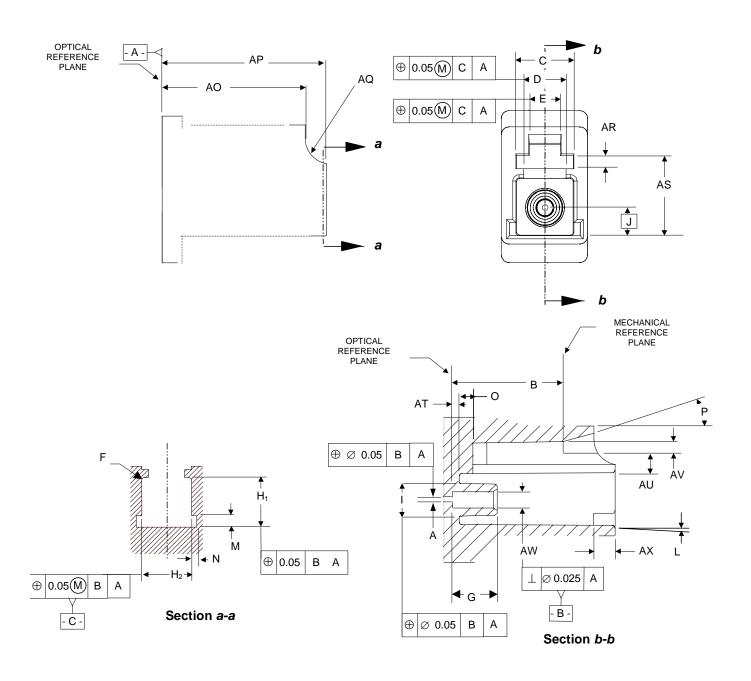

This device adapter couples one singlemode LC connector to customer supplied transmitting or receiving device. The simplex LC half of this device follows the small form-factor LC adapter standard. Two-piece design allows customers to install a ferrule alignment and device insert inside the housing. Once the device is mounted in the insert, and the insert assembly is installed into the device adapter housing, the rear-housing unit is pressed onto the retaining pins.

LC Product Specification Issue 5 June 2006

3.2a - LC Duplex Device Receptacle - Front View

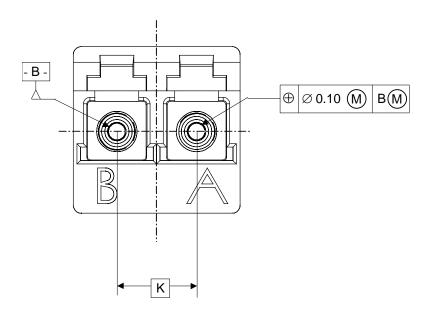
3.2b - LC Duplex Device Receptacle - Rear View

SPECIFICATIONS


- Compliant with FOCIS 10 Connector Standard (to be TIA/EIA-604-10).
- Housing material is a glass filled thermoplastic.
- Non-keyed connector adapter housing.
- Positive LC ferrule stop, provides known optical reference plane.
- Single piece design, with mounting clip.
- Clip has solder-able mounting tabs. Tab widths are 0.040 in. and spaced 0.400 in.
- Single cylindrical device bore, with non-rotation tab notch.
- Vented device bores.
- Includes two simplex LC bore dust covers.

FEATURES

This device adapter will couple one or two simplex, or a duplex multimode LC connector to customer supplied transmitting and receiving devices. The duplex LC half of this device follows the small form-factor LC adapter standards. Single piece design, with mounting clip, allows customers to install devices and mount the adapter to electronic wiring boards. Securing the device adapter will be done by means of solder-able tabs on the retaining clip.



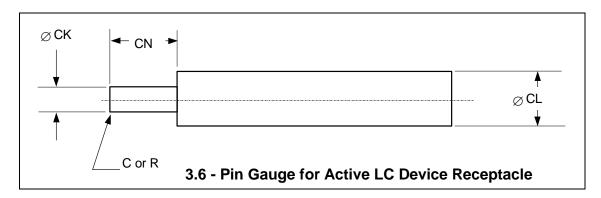
	3.3 - LC Device Rec	eptacle Materials	
Connector Part	Material	UL 94 Rating	Oxygen Index
Receptacle Housing	Engineering Plastic	V-1	28
Receptacle Back Plate	Engineering Plastic	V-1	28
Receptacle Insert	Metal	-	-

3.4a - LC Simplex Device Receptacle Illustrations

3.4b - LC Duplex Device Receptacle Illustrations

3.4 – LC	Device Receptacle S	Specifications fo	or Intermateability
Dim.	Min. (mm)	Max. (mm)	Notes
Α	0.5	0.8	See Grade Table 3b
В	9.9	10.0	
С	4.5	-	
D	3.4	3.5	
Е	2.6	2.7	
F	0.2	0.3	radius
G	4.0	4.1	
H ₁	4.65	4.75	
H_2	4.65	4.75	
	2.87	2.97	diameter
J	2.29)	basic dimension
K	6.25)	basic dimension, 3
L	0.2	0.0	degrees, 4
М	1.0	1.1	
N	0.5	0.6	
0	-	1.2	
Р	15	-	degrees, typical
AO	12.6	12.8	
AP	14.5	14.7	
AQ	2.2	2.4	radius
AR	1.1	1.2	
AS	6.6	6.8	
AT	0.6	0.7	

AU	1.8	2.0	
AV	1.0	1.1	
AW	-	-	See GRADE TABLE 3b
AX	1.9	-	


- NOTE 1. The connector alignment feature is a rigid bore sleeve or a resilient alignment sleeve. Dimension AW defines the inner diameter of the alignment feature.
- NOTE 2. The sleeve may be fixed or floating. For a fixed sleeve, the positional tolerance applies. For a floating sleeve, a gauge pin inserted in the sleeve must be capable to move freely into a position such that it is coincident with datum B.
- NOTE 3. Each of the units in the duplex receptacle shall comply with all of dimensions of Figures 3.4a and 3.4b.
- NOTE 4. Taper, dimension L, is applied to the surfaces associated with dimension/feature H_1 and H_2

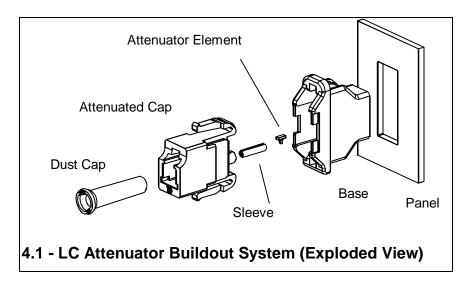
3.5 - Active Device Receptacle Interface - Alignment Sleeve Grade

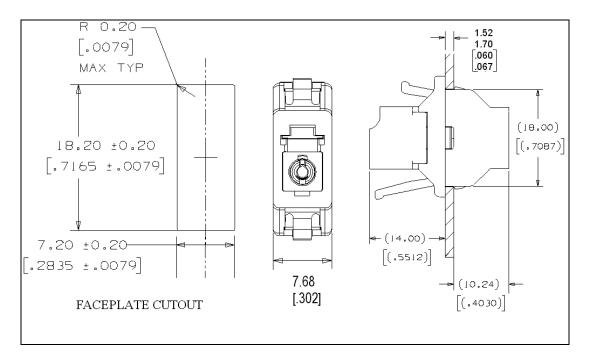
		<u> </u>	
	N (mm)		
GRADE	MIN	MAX	NOTES
1	1.251	1.252	rigid bore sleeve, 1, 3
2	1.251	1.254	
3	1.251	1.257	
4			resilient alignment
			sleeve, 2, 3

- NOTE 1. The connector alignment feature is a rigid bore sleeve. The dimension A shall be tested using two pin gauges. One pin gauge has the pin gauge grade number 1 μ m larger than the maximum value of dimension A, the other pin gauge has the number pin gauge grade number 1 μ m smaller than the minimum value of dimension A. The appropriate pin gauge shall be selected from the pin gauge grade table.
- NOTE 2. The connector alignment feature is a resilient (split) alignment sleeve. The feature must accept a pin gauge completely to the left side of dimension G with a force of 1.0 N to 2.5 N. Insert the pin gauge completely, from only one side, the connector side of the active device receptacle interface. The pin gauge is defined in Table 4.

3.7 – Pin Gauge Grade							
PIN	CK		CL		CN		
GAUGE	(mm)		(mm)		(mm)	_	NOTES
GRADE	MIN	MAX	MIN	MAX	MIN	MAX	
1.249	1.2485	1.2495	2.6	4.4	4.2	15	resilient sleeve, 1
1.250	1.2495	1.2505					
1.253	1.2525	1.2535					rigid bore sleeve, 1
1.255	1.2545	1.2555					
1.258	1.2575	1.2585					

NOTE 1. Surface roughness should be 0,2 μm Ra and cylindricity is less than 0,5 μm .


3.9 - LC Device Receptacle Color Code				
Device Receptacle Housing Color				
SM Blue				
MM	Black			



4.0 – LC Attenuator Specification

4.0 - LC Attenuator Specification

4.2 - LC Split Adapter/Attenuator Footprint Illustration

4.3 - LC Attenuator Materials and Specifications					
Connector Part Material I			Rating	Oxygen Index	
Attenuator Cap	Engineering Plastic	V	-0	48	
Base	Engineering Plastic	V	-0	48	
Attenuator Element	Optical Plastic	H	.B	T.B.D	
Attenuator Sleeve	Zirconia		-	-	
Specifications:		Units		Value	
Physical			LC Split Adapter Type		
Cap Color			0 dB = Blue, Attenuator = Yellow		
Base Color			Black		
Transmission			Singlemode		
Nominal Attenuation @	1550 nm and 0 dBm	dB	See Table-1 below		
Attenuation Tolerance @	2 1550 nm and 0 dBm	dB	See Table-1 below		
Maximum Spectral Atter	nuation Variation (1300 to	dB	See Note 1		
1620 nm)					
Maximum Attenuation V	ariation Due to Incident	dB	See Note 2		
Power					
Maximum Incident Optical Power Handling Capability			25		
Reflectance			Typically = -34, Maximum = -30		
Operating Temperature			-40 to 75		
Matings over Life			200		
Qualification Tests and Applicable Standards			See Table -	2	

4.4 - SM Attenuation Levels and Performance

All numbers apply for 1550 nm and 0 dBm signals

PRODUCT CODE	ORDER COMCODE	NOMINAL* LOSS (dB)	TYPICAL STANDARD DEVIATION IN LOSS (dB)	NOMINAL LOSS TOLERANCE +/- (dB)
AALCS-00.5	108355363	0.5	.08	0.25
AALCS-01.0	108355371	1	.08	0.25
AALCS-01.5	108355389	1.5	.08	0.25
AALCS-02.0	108349457	2	.08	0.25
AALCS-02.5	108349440	2.5	.08	0.25
AALCS-03.0	108288481	3	.08	0.25
AALCS-03.5	108288440	3.5	.08	0.25
AALCS-04.0	108357963	4	.08	0.25
AALCS-04.5	108357971	4.5	.08	0.25
AALCS-05.0	108288473	5	.08	0.25
AALCS-05.5	108357989	5.5	.08	0.25
AALCS-06.0	108349432	6	.08	0.25
AALCS-06.5	108357997	6.5	.08	0.25
AALCS-07.0	108288465	7	.08	0.25
AALCS-07.5	108358003	7.5	.08	0.25
AALCS-08.0	108358011	8	.08	0.25
AALCS-08.5	108358029	8.5	.10	0.25
AALCS-09.0	108358037	9	.10	0.25
AALCS-09.5	108358045	9.5	.10	0.25
AALCS-10.0	108288457	10	.10	0.25
AALCS-11.0	108358078	11	.12	0.50
AALCS-12.0	108358094	12	.12	0.50
AALCS-13.0	108358128	13	.12	0.50
AALCS-14.0	108358144	14	.12	0.50
AALCS-15.0	108358169	15	.12	0.50
AALCS-18.0	108358193	18	.12	0.50
AALCS-19.0	108358201	19	.15	0.50
AALCS-20.0	108358219	20	.14	0.50

^{*}The caps are laser marked with the nominal attenuation (dB)

4.5 - LC Attenuator Compliance to GR-910-CORE

Tests	Compliance	Notes
Baseline IL/RL	Yes	
Damage	Yes	
Thermal Aging	Yes	
Thermal Cycling	Yes	
Humidity/Condensation	Yes	
Dry Out-Thermal Cycle	Yes	
Vibration	Not Tested to GR-910-CORE	Tested to GR-63-CORE
Flex	Yes	
Twist	Yes	
Proof	Yes	
Transmission w/Applied Load	Yes	
Durability	Yes	
Impact	Yes	
End of Test	Yes	

4.6 - Spectral Flatness:

Attenuation increases at lower wavelengths. Attenuation for wavelengths other than 1550 nm is described by the following equations:

For
$$\lambda$$
 < 1550 nm
L_S = A(1 + 3.88x10⁻⁴ (1550- λ))

For
$$\lambda > 1550 \text{ nm}$$

L_S = A(1 - 3.88x10⁻⁴ (λ -1550))

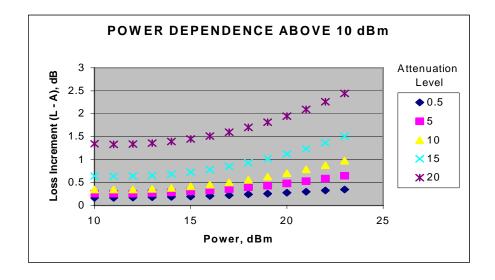
L_S = Predicted loss of a randomly selected attenuator in dB A = Nominal Attenuation value in dB at 1550 nm and 0 dBm

 λ = Wavelength in nm

4.7 - Power Divergence:

Below 10 dBm the attenuation is not affected by the power level.

At 10dBm and above the loss depends on Power and Attenuation level and can be described by the following equation:


$$L_P = A + 0.213 - 0.0143 P + 0.000806 P^2 + 0.0826 A - 0.00439 A^2 + 0.000279 A^3 - 0.00823 AP + 0.000358 AP^2$$

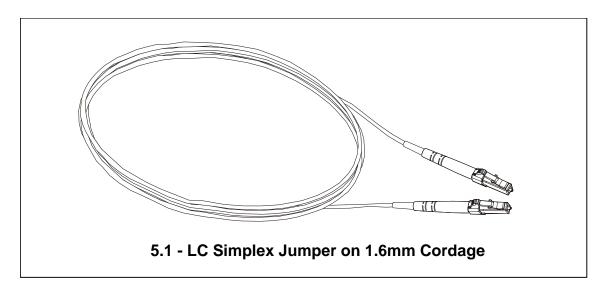
L_P = Predicted loss of a randomly selected attenuator in dB

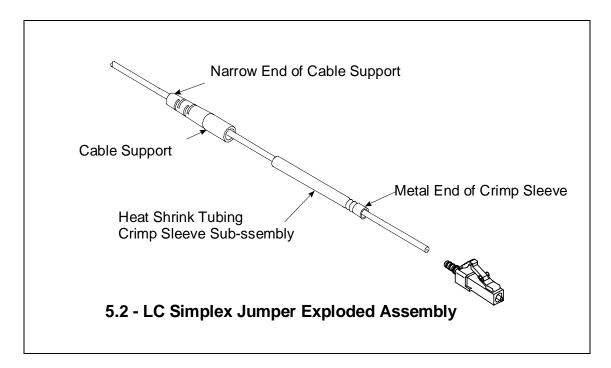
A = Nominal Attenuation value in dB at 1550 nm and 0 dBm


P = Power in dBm

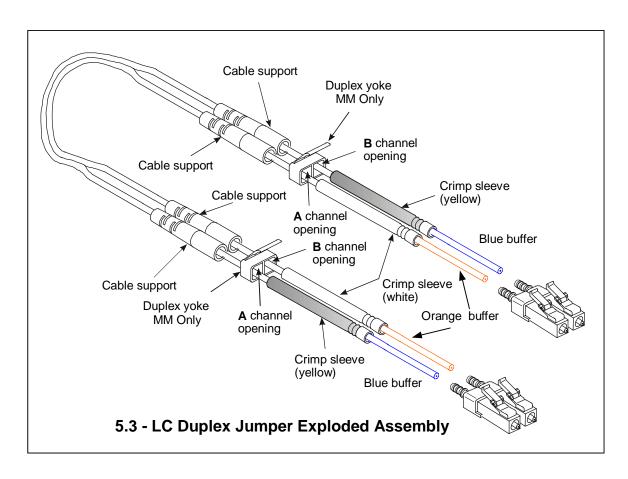
This dependence is shown in plot.

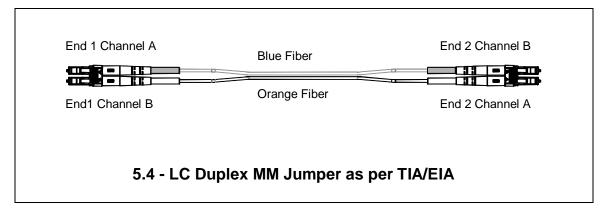
29

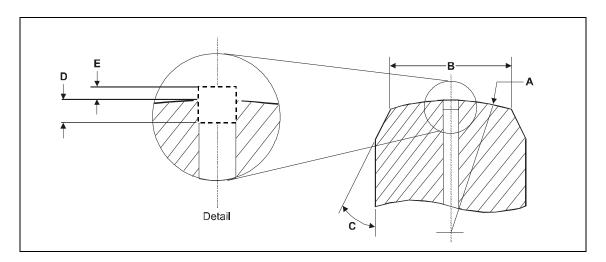

4.9 - LC Attenuator Color Code	
Attenuator	Housing Color
SM – Attenuated Cap	Yellow
0-dB Cap	Blue
Base	Black



5.0 – LC Jumper Specification



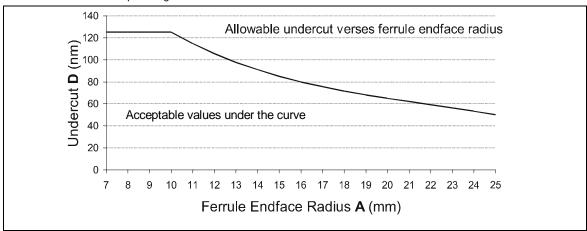

5.0 - LC Jumper Specification


5.5 - LC Jumper/Connector Materials					
Connector Part	Material	UL 94 Rating	Oxygen Index		
Unibody Housing	Engineering Plastic	V-0	38%		
BTW Housing	Engineering Plastic	V-0	47%		
BTW Extender Cap	Engineering Plastic	V-0	38%		
Strain Relief Boot	Thermoplastic Elastomer	V-0	30%		
Heat Shrink Tubing	Polyolefin (flame retardant)	UL/CSA Recognized ²	-		
Buffer Adapter	PVC	V-0	28%		
Simplex Trigger/Duplex	Nylon	V-0	31%		
Clip					
Spring	Metal	-	-		
Ferrule	Zirconia	-	-		
Crimp Sleeve	Metal	-	-		
Jumper Ext. Cap Insert	Metal	-	-		
Ferrule Flange	Metal	-	•		
Ferrule Flange Tubing	Teflon PTFE ¹	V-0	95%		
Dust Cap	Engineering Plastic	V-0	34%		
1.6mm Minicord		UL 1666			
Jacket	PVC				
Buffer	Nylon				
Strength Material	Arimid Yarn				

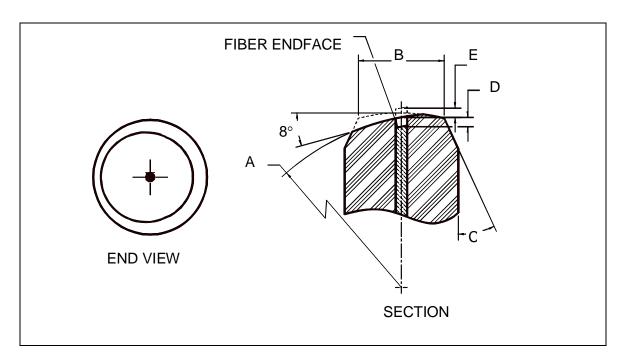
Notes:

- Teflon is a registered trademark of Dupont
 UL 224, 125 C, 600V, VW-1

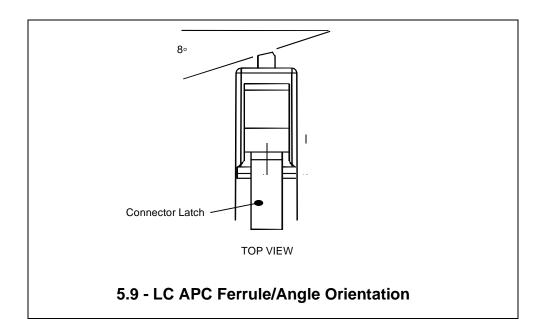
5.6 - Minicord [®] Technical Specifications				
Multimode Fiber, Core/Cladding	62.5/125 microns			
Singlemode Fiber, Core/Cladding	8.3/125 microns			
Fiber Coating	250 micron			
Buffer Diameter	0.9 mm			
Jacket Diameter	1.6 mm			
Fiber Proof Test 100 CPIs (689 N/mm²)				
Cordage Proof Test	20 lb. (88.9 N)			



Note: The dimensions in table below are for reference only and apply after polishing procedures have been completed.


5.7 - LC Singlemode Ferrule Endface Geometry					
Item	Reference	Minimum	Nominal	Maximum	Dimensions
Radius	А	7	12	25	mm
Pedestal*	В	0.6		0.85	mm
Dome ECC.	_	0	_	0.070	mm
Chamfer	С	25	30	35	degrees
Undercut	D	_	_	See Graph A	nm
Protrusion	Е	_	_	50	nm

^{* -} Pedestal diameter after polishing.


Graph A. Recommended Fiber Undercut (Table Reference D)

5.8 - LC APC Ferrule Endface Geometry					
Item	Reference	Minimum	Nominal	Maximum	Dimensions
Radius	Α	5	-	12	mm
Pedestal	В	0.6	-	0.85	mm
Dome ECC.	-	0	-	0.070	mm
Chamfer	С	25	-	35	degrees
Undercut	D	-	-	100	nm
Protrusion	Е	-	-	50	nm

5.10 - LC Factory Made PC Patch Cord – Specifications					
Fiber Type	Singlemode PC	APC	Multimode		
Loss ¹ : Avg./Std. Dev.	0.08 dB/0.07 dB (Tuned)*	0.08 dB/0.06 dB	0.10 dB/0.10 dB		
Loss ¹ : Maximum	0.25 dB ³	0.30 dB	0.5		
	0.15 dB (BT) ⁴	0.15 dB (BT) ⁴			
Return Loss Minimum	55 dB	65 dB	20 dB		
Cable Retention ² (1.6mm)	10 lbs./44.5 N	10 lbs./44.5 N	10 lbs./44.5 N		
0° Axial Pull					
Mating Durability					
(500 Reconnects)	< 0.2 dB	< 0.2 dB	< 0.2 dB		
Insertion Loss Change					
Temp. Stability					
(-40 °C to 75 °C)	< 0.3 dB	< 0.3 dB	< 0.3 dB		
Insertion Loss Change					

¹ Complete connection concatenated statistics 8.8/125 fiber, 62.5/125 fiber. Dry connection.

37

² Values represent axial force on connector with axial pull on cordage. See cordage requirements in Section 5.6. Cable dependent to cause permanent light transmission failure. Figures representative of use with OFS jumper cordage or equivalent.

^{3 *} The performance is representative of all LC factory patchcords herein. X_{max} + 2σ = 0.22 dB, X_{max} + 3σ = 0.30 dB. Performance representative of product - to - product or product - to - OFS "Golden Reference Jumper" (Part No. 108513045).

⁴ BT = Blue Tiger Patchcord

5.11 - Visual Inspection Criteria for Fiber Optic Connectors with Fiber

Issued: February 2000

Figure 2- Definition of regions and defects

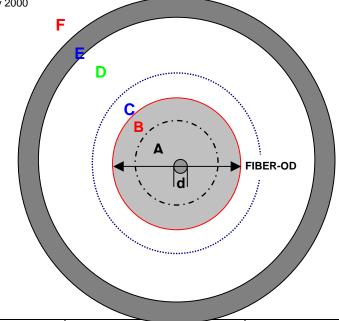
A = RESTRICTED AREA

A=(fiber OD+d)/2

Fiber OD=125 microns d- is the core diameter of the fiber d for SM = 8 microns d for MM is 62 microns A=66 microns for SM fiber A=95 microns for MM fiber

B = FIBER SURFACE

AREA OUTSIDE RESTRICTED "A" TO EDGE OF FIBER(125 UM)

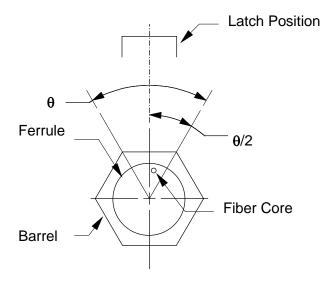

C = FERRULE SURFACE

FERRULE AREA COVERING AREA FROM 125 TO 250 MICRONS

D = FERRULE PEDESTAL

E = CHAMFER

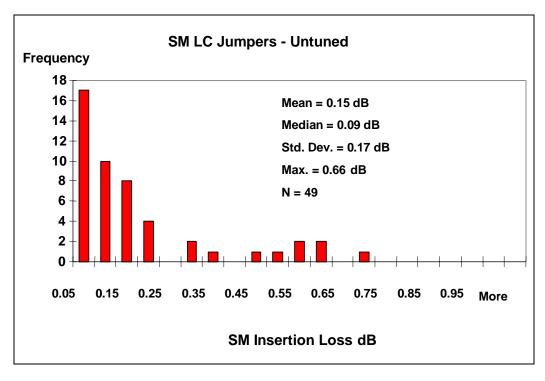
F=OUTSIDE CYLINDRICAL SURFACE

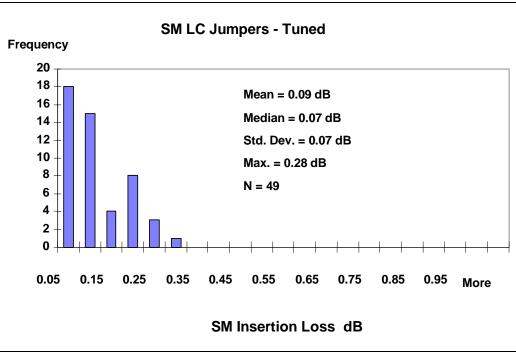


DEFECT	Α	В	C	D-F
CRACK	not acceptable	No Cracks when extended can intersect the core		N/A polished end See Ferrule Spec
СНІР	not acceptable	One defect up to 10um in diameter is acceptable Defect <2.0 um don't count	Multiple defects <10um each are acceptable (can't touch fiber edge) Defects <2.0 um do not count Sum of all defect types<30um	N/A for polished end See Ferrule Spec
PIN HOLES/VOIDS			Multiple defects <10um each are acceptable (can't touch fiber edge) Defects <2.0 um do not count Sum of all defect types<30um	N/A for polished end See Ferrule Spec
SCRATCHES (SM)	No scratches in core Tangent to core acceptable if less than 2 um width	Scratches are acceptable if they do not exceed 2um width		
SCRATCHES (MM And APC connectors)	Scratches in the core are acceptable if transmission requirements are met	Scratches are acceptable if they do not exceed 2um width		
FERRULE SCRATCHES			No scratches > 2 um	acceptable
EPOXY RING		Epoxy ring is acceptable if the width is less than 5 um		
FIXED CONTAMINATION BLACK SPOTS	not acceptable	One defect up to 10um in diameter is acceptable Defect <2.0 um don't count	Multiple defects <10um each are acceptable (can't touch fiber edge) Defects <2.0 um do not count Sum of all defect types<30um	acceptable
RAISED CONTAMINATION	not acceptable	not acceptable	not acceptable	acceptable
LOOSE CONTAMINATION	not acceptable	not acceptable	not acceptable	acceptable

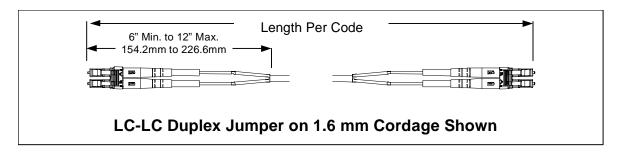
38

5.12 – LC SM Jumper Tuning Configuration




Notes:

- 1. Tuning is required to minimize loss. The eccentricity of the fiber core is to be located relative to the connector latch within the angle θ as shown.
- 2. θ ≤ 180°


5.13 - LC SM Jumper Laboratory Performance, Untuned versus Tuned

Note: Data generated from the same laboratory samples in a laboratory environment

5.14 - LC Jumpers - Available Configurations					
3.14 -	6 ۱۱ر				
LC-LC	LC-SC		LC-FC	LC-ST	
SM & MM	SM & MM		SM & MM	SM & MM	
Simlex & Duplex	Simplex & Duple	ex	Simplex & Duplex	Simplex & Duplex	
Feet	Available Len	gths	and Tolerances Me	ters	
4 +0.5/-0)		1.2 +0.1	5/-0	
5 +0.5/-0)		1.5 +0.1	5/-0	
6 +0.5/-0	6 +0.5/-0		1.8 +0.1	5/-0	
8 +0.5/-0	8 +0.5/-0		2.4 +0.15/-0		
10 +0.5/-	0		3.1 +0.1	5/-0	
15 +1/-0	1		4.6 +0.3	3/-0	
20 +1/-0	1		6.1 +0.3	3/-0	
		7.6 +0.3	3/-0		
30 +1/-0	30 +1/-0 9.2 +0.3/-0			3/-0	
35 +1/-0	35 +1/-0 10.7 +0.3/-0		3/-0		
40 +1/-0	1	12.2 +0.3/-0			
50 +1/-0	50 +1/-0		15.2 +0.3/-0		
75 +1/-0	75 +1/-0 22.9 +0.3/-0			3/-0	
100 +1/-0		30.5 +0.3/-0			

M	S	2	LC	- LC	- 10
Cordage	Fiber Type	Jumper	Connector	Connector	<u>Lengtl</u>
Type		Type	Type (end 1)	Type (end 2)	<u>(ft)</u>
M - Minicord	S-SM	1-Simplex	LC for LC	LC for LC	
	L- MM (62.5)	2-Duplex	LCA for LC Angled	LCA for LC Angled	
B - SBJ	V-Matched Clad	4-Quad	LCB for LC Backlight	BCB for LC Backlight	
N - Nylon Buffer	W-Allwave T-Truewave+		-	FC for FC	
	F-Truewave-			FCA for FC Angled	
	Z-Lazerspeed			D4 for D4 EP for STII+ SC for SC	

5.16 - LC Jumper Color Coding				
Jumper	Connector Color	Cordage Color		
SM	Blue w/White Boot	Yellow		
MM 62.5 μm	Beige w/White Boot	Slate (Gray)		
APC	Green w/Green Boot	Yellow		

6.0 - LC Product Specification - Data

6.0 - LC Product Specification Data

Fiber Optic Apparatus Qualification Laboratory

1997 Test Report – Singlemode LC MinicordTM Jumper.

- 15 SM jumpers randomly selected from Aug 97 production, manufactured by OFS Technology Atlanta Facility.
- Pass/fail determinations for each test: Telcordia GR-326 and OFS Product Specifications.

6.1 - Telcordia GR-326 Optical Performance Criteria (1997)

Insertion Loss (IL)	<u>Requirement</u>	<u>Objective</u>
Maximum IL	0.30 dB	0.20 dB
Mean IL	0.20 dB	0.15 dB
Return Loss (RL)	Requirement	<u>Objective</u>
Maximum RL	40 dB	50dB

OFS LC New Product Specification

Insertion Loss (IL)	<u>Average</u>	Std. Dev.
Factory Tuned	0.08 dB	0.07 dB
Field Installed	0.20 dB	0.10 dB

Return Loss (RL)	<u>Minimum</u>
Factory 1997	50 dB
Factory 1999	55 dB
Field 1999	50 dB

Notes:

44

¹ Complete connection 8.8/125 fiber. Dry connection

² Figures representative of use with OFS jumper cordage or equivalent.

³ The performance representative herein of LC factory patchcords that were produced and tested at OFS Atlanta Facility according to Telecordia 1997 GR-326

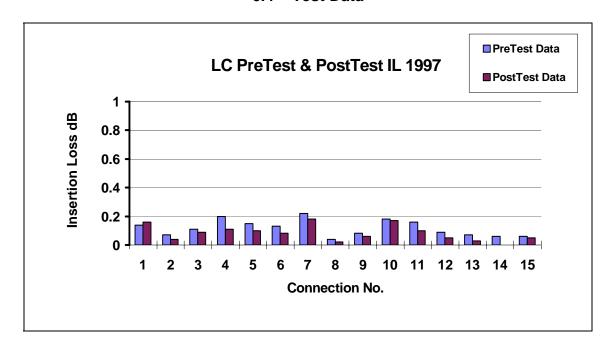
6.2 - Telcordia GR-326 1997 Test Descriptions

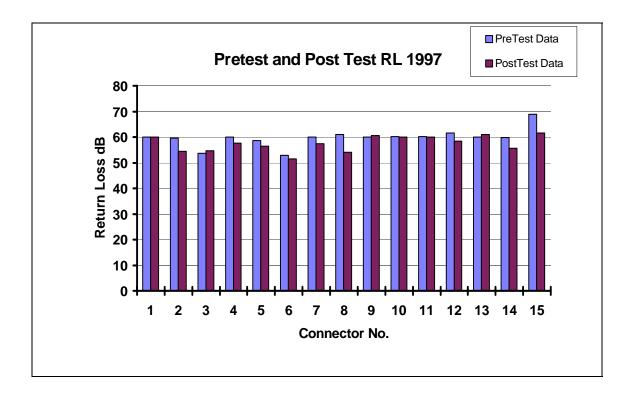
Test	Passing	Passing	Test Protocol			
Description	Requirement	Objective	(15 Samples)			
New Product Testing						
Insertion Loss	0.30 dB Max. 15/15	0.20 dB Max.	OFS in 1997 ≥ 50 dB RL			
IL Increase	0.20 dB Max. Yes	0.15 dB Max.	OFS in 1999 ≥ 55 dB RL			
Return Loss	40 dB Min. 15/15	55 dB Min.				
Thermal Aging	3					
Insertion Loss	0.40 dB Max. 15/15	0.30 dB Max.	Measurement every 6 hours			
IL Increase	0.30 dB Max. 15/15	0.20 dB Max.	Post-test Criteria apply			
Return Loss	40 dB Min. 15/15	55 dB Min.				
Humidity						
Insertion Loss	0.40 dB Max. 15/15	0.30 dB Max.	Measurement every 6 hours			
IL Increase	0.30 dB Max. 15/15	0.20 dB Max.	Criteria listed apply both during and after test			
Return Loss	40 dB Min. 15/15	55 dB Min.				
Thermal Cycle						
Insertion Loss	0.40 dB Max. 15/15	0.30 dB Max.	1 hr hold points at –40°C, 23°C, and 75°C. Measurement following 30 min. at hold points.			
IL Increase	0.30 dB Max. 15/15	0.20 dB Max.	Criteria listed apply both during and after test			
Return Loss	40 dB Min. 15/15	55 dB Min.				

Note: Test samples were allowed to reach thermal equilibrium for at least 2 hr. at 23 C before IL and RL measurements were made at the start and finish of each test.

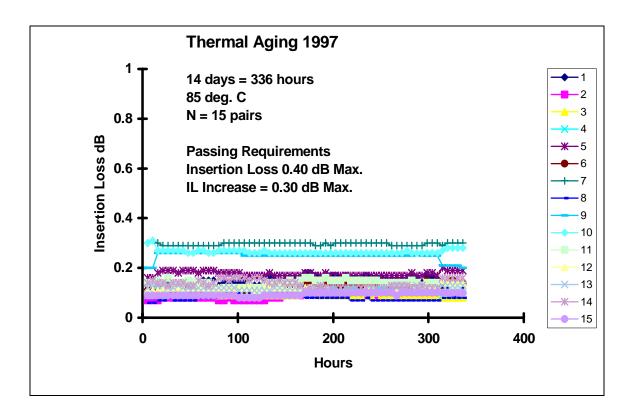
Test	Passing	Passing	Test Protocol				
Description	Requirement	Objective	(15 Samples)				
Vibration							
Insertion Loss	0.40 dB Max. 15/15	0.30 dB Max.	3 principal axis's.				
			2 hr at 1.5mm amplitude, 10 and 55				
IL Increase	0.30 dB Max. 15/15	0.20 dB Max.	Hz at a rate of 45 Hz/min.				
Return Loss	40 dB Min. 15/15	55 dB Min.	Criteria listed apply both during and after test.				
Flex							
Insertion Loss	0.40 dB Max. 15/15	0.30 dB Max.	Mounted to test fixture with applied load of 2 lb. (0.9 kg).				
IL Increase	0.30 dB Max. 15/15	0.20 dB Max.	Rotate cycle 0°,90°, 0°, -90°,0 for 100 cycles.				
Return Loss	40 dB Min. 15/15	55 dB Min.	Criteria listed apply both during and after test.				
Twist							
Insertion Loss	0.40 dB Max. 15/15	0.30 dB Max.	Mounted to test fixture with applied load of 3 lb. (1.36 kg).				
IL Increase	0.30 dB Max. 15/15	0.20 dB Max.	Capstan rotated 90° on fiber axis of fiber then reversed for 5 revolutions.				
Return Loss	40 dB Min. 14/15	55 dB Min.	Criteria listed apply both during and after test				
Proof							
Insertion Loss	0.40 dB Max. 15/15	0.30 dB Max.	Mounted to test fixture with applied load of 10 lb. (4.5 kg) at 0° for a min 10 sec.				
IL Increase	0.30 dB Max. 15/15	0.20 dB Max.					
Return Loss	40 dB Min. 14/15	55 dB Min.	Post-test criteria apply with load removed.				
Transmission	w/ Load 0.25 kg	g					
Insertion Loss	0.50 dB Max. 15/15	0.30 dB Max.	Mounted to test fixture with applied load of 0.55 lb. (.25 kg) at 0° for a min 10 sec.				
Return Loss	40 dB Min. 14/15	55 dB Min.	Increase angle to 90° &135° and repeat at each angle. Criteria listed apply both during and after test				

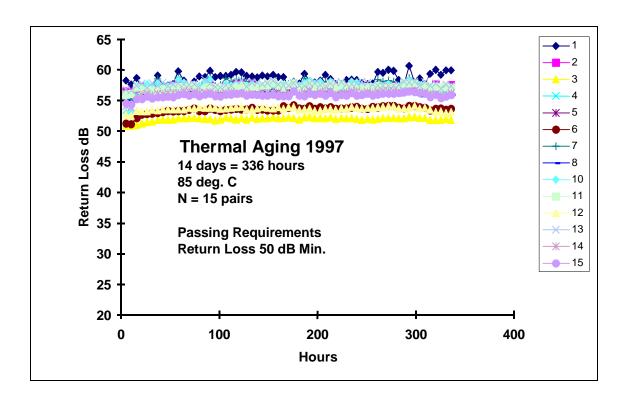
Description Requirement Objective (15 Samples)	Test	Passing	Passing	Test Protocol				
Insertion Loss			_					
Insertion Loss								
Return Loss			0.30 dB Max.	Increase load to 1.54 lb.				
Transmission Load 1.5 kg Insertion Loss 0.50 dB Max. 15/15 Feturn Loss 40 dB Min. 14/15 55 dB Min. 14/15 Insertion Loss 0.50 dB Max. 15/15 Insertion Loss 0.50 dB Max. 15/15 Insertion Loss 0.50 dB Max. 15/15 Insertion Loss 0.40 dB Min. 14/15 Insertion Loss 0.40 dB Max. 15/15 Insertion Loss 0.40 dB Max. 15/15 Insertion Loss 0.40 dB Max. 15/15 Insertion Loss 0.30 dB Max. 15/14 Insertion Loss 0.30 dB Max. 15/14 Insertion Loss 0.30 dB Max. 15/14 Insertion Loss 0.30 dB Max. 15/15 Insertion Loss 0.50 dB Max. 15/15 Insertion Loss 0.50 dB Max. 15/15 Insertion Loss 0.30 dB Max. 14/15 Insertion Loss 0.30 dB Max. 14/15 Insertion Loss 0.40 dB Min. 14/15 Insertion Loss 0.40 dB Min. 14/15 Insertion Loss 0.40 dB Max. 14/15 Insertion Loss 14		15/15		(0.7 kg) repeat IL and RL				
Insertion Loss	Return Loss	40 dB Min.	55 dB Min.	measurements at 0° and 90°.				
Insertion Loss								
Transmission W Load 2.0 kg	Transmission	w/ Load 1.5 kg						
Return Loss	Insertion Loss		0.30 dB Max.	Increase load to 3.3 lb. (1.5 kg)				
Transmission w/ Load 2.0 kg Insertion Loss 0.50 dB Max. 15/15 To dB Min. 14/15 To dB Min. 14/15 To dB Min. 15/15 To dB Min. 14/15 To dB Min. 15/15				repeat IL and RL				
Transmission w/ Load 2.0 kg	Return Loss		55 dB Min.	measurements at 0° and 90°.				
Insertion Loss								
Return Loss 40 dB Min. 14/15 Mating Durability Reconnect 200 times, both connectors cleaned after cycles 0, 50, 100, 150 and 200; mating connectors cleaned after 25, 50, 75, 125, and 175. Return Loss 0.30 dB Max. 15/14 0.20 dB Max. 15/15 0.30 dB Max			T					
Mating Durability Reconnect 200 times, both connectors cleaned after cycles 0, 50, 100, 150 and 200; mating connectors cleaned after 25, 50, 75, 125, and 175. IL Increase 0.30 dB Max. 15/14 0.20 dB Max. 15/14 Criteria listed apply for each measurement. Return Loss 40 dB Min. 14/15 55 dB Min. 15/15 Mount one connector (jumper) on fixture. Raise connector to Horizontal position, drop so connector impacts on block. IL Increase 0.30 dB Max. 15/15 0.20 dB Max. 14/15 Repeat 8 times. Post-test criteria apply End of Test 0.40 dB Max. 14/15 0.30 dB Max. 14/15 For this lot, Mean IL of 0.12 dB including fusion splices. IL Increase 0.30 dB Max. 14/15 0.20 dB Max. 13/10/1550 nm. For this lot 56.6 dB RL, for both	Insertion Loss		0.30 dB Max.	` •, .				
Reconnect 200 times, both connectors cleaned after cycles 0, 50, 100, 150 and 200; mating connectors cleaned after 25, 50, 75, 125, and 175. IL Increase	Return Loss	40 dB Min.	55 dB Min.	measurements at 0° and 90°.				
Reconnect 200 times, both connectors cleaned after cycles 0, 50, 100, 150 and 200; mating connectors cleaned after 25, 50, 75, 125, and 175. IL Increase		14/15						
Connectors cleaned after cycles 0, 50, 100, 150 and 200; mating connectors cleaned after 25, 50, 75, 125, and 175. IL Increase	Mating Durabi	lity						
Insertion Loss 0.40 dB Max. 15/15				The state of the s				
Connectors cleaned after 25, 50, 75, 125, and 175.				•				
L Increase 0.30 dB Max. 15/14	Insertion Loss		0.30 dB Max.	_				
IL Increase		15/15 		1				
Return Loss 40 dB Min. 14/15 Criteria listed apply for each measurement. Impact Insertion Loss 0.50 dB Max. 15/15 Mount one connector (jumper) on fixture. Raise connector to Horizontal position, drop so connector impacts on block. Return Loss 40 dB Min. 14/15 Post-test criteria apply End of Test Insertion Loss 0.40 dB Max. 14/15 For this lot, Mean IL of 0.12 dB including fusion splices. IL Increase 0.30 dB Max. 14/15 Std. Dev. = 0.08 dB, for both 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both				Measurement on cycle immediately				
Return Loss 40 dB Min. 14/15 Impact Insertion Loss 0.50 dB Max. 15/15 IL Increase 0.30 dB Max. 15/15 Return Loss 40 dB Min. 14/15 Insertion Loss 0.30 dB Max. 15/15 Return Loss 40 dB Min. 14/15 Return Loss 0.40 dB Max. 14/15 Insertion Loss 0.40 dB Max. 14/15 Insertion Loss 0.40 dB Max. 14/15 Insertion Loss 0.40 dB Max. 14/15 Return Loss 0.30 dB Max. 14/15 Return Loss 0.40 dB Max. 14/15 Return Loss 0.50 dB Max. 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	IL Increase	0.30 dB Max.	0.20 dB Max.	before and after each cleaning.				
Impact Insertion Loss 0.50 dB Max. 15/15 0.30 dB Max. 15/15 0.30 dB Max. 15/15 0.30 dB Max. 15/15 0.30 dB Max. 15/15 0.20 dB Max. Horizontal position, drop so connector impacts on block. Return Loss 40 dB Min. 55 dB Min. Repeat 8 times. Post-test criteria apply End of Test Insertion Loss 0.40 dB Max. 14/15 0.30 dB Max. For this lot, Mean IL of 0.12 dB including fusion splices. IL Increase 0.30 dB Max. Yes 0.20 dB Max. Std. Dev. = 0.08 dB, for both 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both								
Insertion Loss O.50 dB Max. 15/15 IL Increase O.30 dB Max. 15/15 O.20 dB Max. Horizontal position, drop so connector impacts on block. Return Loss 40 dB Min. 14/15 End of Test Insertion Loss O.40 dB Max. 14/15 O.30 dB Max. 14/15 For this lot, Mean IL of 0.12 dB including fusion splices. IL Increase O.30 dB Max. 14/15 O.30 dB Max. 14/15 Std. Dev. = 0.08 dB, for both 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	Return Loss		55 dB Min.					
Insertion Loss 0.50 dB Max. 15/15 IL Increase 0.30 dB Max. 15/15 Return Loss 40 dB Min. 14/15 Insertion Loss 0.40 dB Max. 14/15 IL Increase 0.30 dB Max. 15/15 0.20 dB Max. 13/15/15/15 Return Loss 40 dB Min. 55 dB Min. For this lot, Mean IL of 0.12 dB including fusion splices. Std. Dev. = 0.08 dB, for both 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both		14/15		measurement.				
15/15 15/1								
IL Increase 0.30 dB Max. 15/15 Return Loss 40 dB Min. 14/15 Solution For this lot, Mean IL of 0.12 dB including fusion splices. Return Loss 0.30 dB Max. 14/15 IL Increase 0.40 dB Max. 14/15 0.30 dB Max. 14/15 IL Increase 0.30 dB Max. Yes 0.20 dB Max. Std. Dev. = 0.08 dB, for both 1310/1550 nm. For this lot 56.6 dB RL, for both For this lot 56.6 dB RL, for both	Insertion Loss		0.30 dB Max.	. ,				
Return Loss 40 dB Min. 14/15 55 dB Min. Repeat 8 times. Post-test criteria apply End of Test Insertion Loss 0.40 dB Max. 14/15 For this lot, Mean IL of 0.12 dB including fusion splices. IL Increase 0.30 dB Max. Yes 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	11 1		0.00 ID M					
Return Loss 40 dB Min. 14/15 55 dB Min. Repeat 8 times. Post-test criteria apply End of Test Insertion Loss 0.40 dB Max. 14/15 For this lot, Mean IL of 0.12 dB including fusion splices. IL Increase 0.30 dB Max. Yes Std. Dev. = 0.08 dB, for both 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	IL Increase		0.20 dB Max.	• • •				
End of Test Insertion Loss	Detumales		EE alD Min	'				
Insertion Loss 0.40 dB Max. 14/15 For this lot, Mean IL of 0.12 dB including fusion splices. IL Increase 0.30 dB Max. Yes Std. Dev. = 0.08 dB, for both 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	Return Loss		55 dB Min.	•				
Insertion Loss 0.40 dB Max. 14/15 For this lot, Mean IL of 0.12 dB including fusion splices. IL Increase 0.30 dB Max. Yes Std. Dev. = 0.08 dB, for both 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	End of Tost	14/13		r usi-lesi ulilella appiy				
14/15 including fusion splices. IL Increase 0.30 dB Max. Yes 0.20 dB Max. 310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both		0.40 dB May	0.30 dB May	For this lot Mean II of 0.12 dB				
IL Increase 0.30 dB Max. Yes 0.20 dB Max. 1310/1550 nm. Std. Dev. = 0.08 dB, for both 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	11136111011 11035		U.JU UD IVIAX.	·				
Yes 1310/1550 nm. Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	II Increase		0.20 dB Max	• '				
Return Loss 40 dB Min. 55 dB Min. For this lot 56.6 dB RL, for both	in inordado		0.20 GD Max.					
· · · · · · · · · · · · · · · · · · ·	Return Loss		55 dB Min					
	1.0.0 2000	15/15	30 02	1310/1550 nm.				




6.3 - Telcordia LC Test Results for 15 Samples

Tests	Requirements			Objectives		
	IL	IL+	RL	IL	IL+	RL
New Product Testing	15/15	Yes	15/15	15/15	Yes	15/15
Thermal Aging	15/15	15/15	15/15	15/15	15/15	14/15
Humidity	15/15	15/15	15/15	15/15	N/A	14/15
Thermal Cycle	15/15	15/15	15/15	15/15	15/15	13/15
Vibration	15/15	15/15	15/15	15/15	15/15	14/15
Flex	15/15	15/15	15/15	15/15	15/15	12/15
Twist	15/15	15/15	15/15	15/15	15/15	9/15
Proof	15/15	15/15	14/15	15/15	15/15	9/15
Transmission w/ Load 0.25 kg	15/15	N/A	14/15	15/15	N/A	9/15
Transmission w/ Load 0.7 kg	15/15	N/A	14/15	15/15	N/A	9/15
Transmission w/ Load 1.5 kg	15/15	N/A	14/15	15/15	N/A	9/15
Transmission w/ Load 2.0 kg	15/15	N/A	14/15	15/15	N/A	9/15
Mating Durability	15/15	15/15	14/15	15/15	15/15	12/15
Impact	15/15	15/15	14/15	14/15	15/15	12/15
End of Test	14/15	Yes	15/15	15/15	Yes	7/15




6.4 - Test Data



